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In this talk we will consider the initial value problem associated to the

nonlinear equation ut + u ∂xu + ∂x∆u = 0,

u(x, y, 0) = u0(x, y)
(1)

called the Zakharov-Kuznetsov equation, where u is a real valued

function defined in some suitable domain and ∆ = ∂2
x + ∂2

y .
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Model

The equation under consideration is a 2D version of the Zakharov-

Kuznetsov equation, that is,

ut + u ∂xu + ∂x∆u = 0, (2)

This equation was first derived by Zakharov and Kuznetsov (1974) in

three-dimensional form to describe nonlinear ion–acoustic waves in a

magnetized plasma. A variety of physical phenomena, are governed

by this type of equation; for example, the long waves on a thin liquid

film, the Rosby waves in rotating atmosphere, and the isolated vortex

of the drift waves in three-dimensional plasma.
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Even though the Zakharov-Kuznetsov equation seems a natural ge-

neralization of the Korteweg-de Vries equation,

∂tv + v∂xv + ∂3
xv = 0,

the ZK equation is derived from the Euler-Poisson system for nonli-

near ion-acoustic waves in a magnetized plasma.
nt + div(nv) = 0

vt + (v · ∇)v +∇ϕ + a ex × v = 0 ex =
(

1 0 0
)T

∆ϕ− eϕ + n = 0

where

n = ion density v = ion velocity ϕ = electrostatic potential and

a ≥ 0 measures the applied magnetic field.
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ZK equation in a cylinder and on the background of a KdV soliton

Motivation

The Zakharov-Kuznetsov (ZK) equation admits as a solution the well-

known KdV solitary wave φω(x, t) = φω(x− ωt), where

φω(ξ) = 3ωsech2

(√
ω

2
ξ

)
, ω > 0.

More generally, theN -soliton φN of the KdV equation is also a particu-

lar solution of the ZK equation which is smooth and bounded together

with its time and space derivatives and behaves as a sum of solitons

of velocities 4n2, 1 ≤ n ≤ N when t→∞.

For instance, the 2-soliton φ2 is given by

φ2(x, t) = 72
3 + 4 cosh(2x− 8t) + cosh(4x− 64t)

[3 cosh(x− 28t) + cosh(3x− 36t)]2
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A fundamental issue is that of the transverse stability/instability of

those one-dimensional “localized” solutions of the KdV equation (such

as the solitary wave) with respect to transverse perturbations gover-

ned by the ZK equation. This question was rigorously addressed

recently by Rousset and Tzvetkov who developed a general theory

which applies in particular to one-dimensional transverse perturbati-

ons of the KdV solitary wave.
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Functional framework for the Cauchy problem which should be suita-

ble to describe the aforementioned transverse perturbations.

This framework cannot be the classical Sobolev spaces Hs(Rd) since

the KdV soliton or multi-soliton do not belong to this class of spa-

ces. A natural space to study the transverse stability of localized one-

dimensional solutions should contain those solutions.
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A first possibility consists in functions which are “localized” in x and

periodic in y. This leads to our study of the Cauchy problem for the

ZK equation in Hs(R× T).

Let T = R/2πZ be the one-dimensional torus. We will thus consider

the IVP associated to the ZK equation in a cylinder∂tu + ∂x∆u + u∂xu = 0, (x, y) ∈ R× T, t > 0,

u(x, y, 0) = u0(x, y).
(3)
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A second possibility is to consider two-dimensional “localized” pertur-

bations of the one-dimensional solution φ. This motivates the study of

the Cauchy problem,{
ut + ∂x∆u + u∂xu + ∂x(φu) = 0, (x, y) ∈ R2, t > 0

u(x, y, 0) = u0(x, y),
(4)

where φ is the KdV solitary wave solitary wave or more generally any

N -soliton of the KdV equation. Actually, we will only use that φ =

φ(x, t) is a solution of the KdV equation which is smooth and bounded

together with its time and space derivatives, and furthemore belongs

to the space L2
xL
∞
T . Those assumptions are obviously satisfied by the

N -soliton solution of the KdV equation.
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– Local well-posedness

We can see that if u is a solution of (1) with data u0, then uλ(x, y, t) =

λu(λx, λy, λ3t) is also a solution with data uλ(x, y, 0) = λu0(λx, λy).

In particular, we have that

‖uλ(0)‖Ḣs(R2) = λs+1‖u0‖Ḣs(R2).

This means that derivatives of the solutions remain invariant only if

s = −1.

This scaling argument suggests local well-posedness for s ≥ −1.
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– Global well-posedness

We note that the Zakharov-Kuznetsov equation has two conserved

quantities, namely,

I1(u(t)) =

∫
R2

u2(x, y, t) dxdy =

∫
R2

u2
0(x, y) dxdy,

and

I2(u(t)) =
1

2

∫
R2

(u2
x + u2

y −
1

3
u3)(x, y, t) dxdy

=
1

2

∫
R2

(u2
0x + u2

0y −
1

3
u3

0)(x, y) dxdy.
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Previous Results

• Faminskii (1995) Local and Global well-posedness for ZK equation

for data in H1(R2).

• Biagioni-L (2003) Local and Global well-posedness for modified

ZK equation for data in H1(R2).

• L-Saut (2008) Local well-posedness for ZK equation in 3D for data

in H3/2+(R3).

• L-Pastor (2009) Local well-posedness for ZK and mZK equation in

2D for data in Hs(R2), s > 3/4.

The notion of well-posedness we use is the one given by Kato, that is,

existence, uniqueness, persistence property and continuous depen-

dence upon the data.
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Main Results

Theorem 1 (ZK on a cylinder) Given u0 ∈ Xs, s > 3/2, there exist

T = T (|||u0|||Xs) and a unique solution u of the IVP (3), such that

u ∈ C([0, T ] : Xs) and u, ∂xu, ∂yu ∈ L1
TL
∞
xy. Moreover, the map

data-solution u0 ∈ Xs 7→ u ∈ C([0, T ] : Xs) is continuous.

The functional space Xs is defined by the norm

|||f |||Xs := ‖J sxf‖L2(R×T) + ‖J syf‖L2(R×T). (5)
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Theorem 2 (Perturbed ZK) For any u0 ∈ H1(R2), there exist T =

T (‖u0‖H1) > 0 and a unique solution of the IVP (4), defined in the

interval R+, such that for any T > 0

u ∈ C(R+;H1(R2)), (6)

‖∂2
xu‖L∞x L2

yT
+ ‖∂y∂xu‖L∞x L2

yT
<∞, (7)

‖∂xu‖L2
TL
∞
xy
<∞, (8)

and

‖u‖L2
xL
∞
yT
<∞. (9)
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Moreover, there exists a neighborhood W of u0 in H1(R2) such that

the map ũ0 7→ ũ(t) fromW into the class defined by (6)–(9) is smooth.

One has the two energy identities

1

2

d

dt

[∫
R2

u2(x, y, t)dxdy

]
+

1

2

∫
R2

u2(x, y, t)φ(x, t)dxdy = 0 (10)

1

2

d

dt

[∫
R2

(|∇u|2 − 1

3
u3)(x, y, t)− u2(x, y, t)φ(x, t)dxdy

]
+

1

2

∫
R2

u2(x, y, t)φt(x, t)dxdy = 0.

(11)
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Ingredients and ideas of the proofs

ZK on a cylinder

To deal with the IVP associated to (3) we will follow the ideas intro-

duced by Ionescu and Kenig to study the IVP associated to the KP I

equation in a cylinder and in T2. Their argument of proof is an exten-

sion of the methods used by Koch and Tzvetkov for the Benjamin-Ono

equation, Kenig and König also for the Benjamin-Ono equation and by

Kenig for the KPI equation.
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– Energy estimates

Lemma 1 Let u be a solution of the IVP (3) with u0 ∈ H∞(R × T).

Then for any s ≥ 1, we have, for any T ∈ [0, 1], that

sup
0<t<T
|||u(t)|||Xs

≤ cs exp
(
cs (‖u‖L1

TL
∞
xy

+ ‖∂xu‖L1
TL
∞
xy

+ ‖∂yu‖L1
TL
∞
xy

)
)
‖u0‖Xs,

(12)

where

|||f |||Xs = ‖J sxf‖L2(R×T) + ‖J syf‖L2(R×T).

Kato-Ponce commutators: Let s ≥ 1 and f, g ∈ H∞(R× T). Then

‖J sy (fg)−fJ syg‖L2
y
≤ Cs

[
‖J syf‖L2

y
‖g‖L∞y + (‖f‖L∞y + ‖∂yf‖L∞y )‖J s−1

y g‖L2
y

]
.
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– A priori estimate

Lemma 2 Let u be a solution of (3) with u0 ∈ H∞(R × T) defined in

[0, T ]. Let

|||u0|||Xs = ‖J sxu0‖L2(R×T) + ‖J syu0‖L2(R×T).

Then for any s > 3/2, there exists T = T (‖u0‖Xs, s) and a constant

cT (‖u0‖Xs, s) such that

f (T ) :=

T∫
0

(
‖u(t)‖L∞xy

+ ‖∂xu(t)‖L∞xy
+ ‖∂yu(t)‖L∞xy

)
dt ≤ cT . (13)
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– Key estimate

Lemma 3 Let u ∈ C([0, T ] : H∞(R × T)) ∩ C1([0, T ] : H∞(R × T)),

F ∈ C([0, T ] : H∞(R× T)), T ∈ [0, 1], and

∂tu + ∂x∆u = ∂xF on R× T× [0, T ]. (14)

Then, for any s1 > 0 and s2 > 1/2,

‖u‖L1
TL
∞
xy
≤ cs1, s2 T

1/2
(
‖J s1x J s2y u‖L∞T L2

xy
+ ‖J s1x F‖L1

TL
2
xy

)
. (15)
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– Localized Strichartz estimate

Consider the solution of the linear IVP∂tu + ∂x∆u = 0, (x, y) ∈ R× T, t ∈ R,

u(x, y, 0) = u0(x, y),
(16)

that is, u(x, y, t) = W (t)u0(x, y), where

W (t)u0(x, y) =
∑
n∈Z

∫
R
ei(xξ+yn+t(ξ3+ξn2))û0(ξ, n) dξ. (17)

Then
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Lemma 4 Assume φ ∈ S(R× T). Then, for any ε > 0,

‖W (t)Qk
yQ

j
xφ‖L2

2−k−jL
∞
xy
≤ Cε2

(−1/2+ε)j‖Qk
yQ

j
xφ‖L2

xy
. (18)

The operators Qk
x and Qk

y on H∞(R× T) are defined by

Q̂0
xg(ξ, n) = χ[0,1)(|ξ|)ĝ(ξ, n), Q̂k

xg(ξ, n) = χ[2k−1,2k)(|ξ|)ĝ(ξ, n) if k ≥ 1,

and

Q̂0
yg(ξ, n) = χ[0,1)(|n|)ĝ(ξ, n), Q̂k

yg(ξ, n) = χ[2k−1,2k)(|n|)ĝ(ξ, n) if k ≥ 1.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Perturbed ZK

Consider the linear IVP
ut + ∂x∆u = 0, (x, y) ∈ R2, t ∈ R,

u(x, y, 0) = u0(x, y).

(19)

The solution of (19) is given by the unitary group {U(t)}∞t=−∞ such that

u(t) = U(t)u0(x, y)

=

∫
R2

ei(t(ξ
3+ξη2)+xξ+yη) û0(ξ, η)dξdη.
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Strichartz Estimates

Proposition 1 Let 0 ≤ ε < 1/2 and 0 ≤ θ ≤ 1. Then the group

{U(t)}∞t=−∞ satisfies

‖Dθε/2
x U(t)f‖Lq

tL
p
xy
≤ c‖f‖L2

xy
,

‖Dθε
x

∫ ∞

−∞
U(t− t′)g(·, t′)dt′‖Lq

tL
p
xy
≤ c‖g‖

Lq′
t L

p′
xy
,

‖Dθε
x

∫ ∞

−∞
U(t)g(·, t)dt‖L2

xy
≤ c‖g‖

Lq′
t L

p′
xy
,

where 1
p

+ 1
p′

= 1
q

+ 1
q′

= 1 with

p =
2

1− θ
and

2

q
=
θ(2 + ε)

3
.
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As a consequence of Proposition 1 we have

Let 0 ≤ ε < 1/2. Then the group {U(t)}∞t=−∞ satisfies

‖U(t)f‖L2
TL
∞
xy
≤ cT γ‖D−ε/2x f‖L2

xy
(20)

and

‖U(t)f‖
L

9/4
T L∞xy

≤ cT δ‖D−ε/2x f‖L2
xy
, (21)

where γ = (1− ε)/6 and δ = (2− 3ε)/18.
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Smoothing Effect

Lemma 5 Let u0 ∈ L2(R2). Then,

‖∂xU(t)u0‖L∞x L2
yT
≤ c‖u0‖L2

xy
.

Maximal Function Estimate

Lemma 6 Let u0 ∈ Hs(R2), s > 3/4. Then,

‖U(t)u0‖L2
xL
∞
yT
≤ c(s, T )‖u0‖Hs

xy
,

where c(s, T ) is a constant depending on s and T .
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Consider the integral operator

Ψ(u)(t) = Ψu0
(u)(t)

= U(t)u0 +

∫ t

0
U(t− t′)(u2ux + ∂x(φu))(t′)dt′

and define the metric spaces

YT = {u ∈ C([0, T ];Hs(R2)); |||u||| <∞}

and

YaT = {u ∈ XT ; |||u||| ≤ a},

with

|||u||| : = ‖u‖L∞T H1
xy

+ ‖∂xu‖L2
TL
∞
xy

+ ‖∂2
xu‖L∞x L2

yT
+ ‖∂2

xyu‖L∞x L2
yT

+ ‖u‖L2
xL
∞
yT
,

where a, T > 0 to be determined.
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Generalized Zakharov-Kuznetsov equation

Next we consider the IVPut + ∂x∆u + ukux = 0, (x, y) ∈ R2, t > 0,

u(x, y, 0) = u0(x, y).
(22)

• For 2 ≤ k ≤ 7, the IVP above is shown to be locally well-posed for

data in Hs(R2), s > 3/4 (3/4 > sscal = 1− 2
k
).

• For k ≥ 8, local well-posedness is shown to hold for data in

Hs(R2), s > sk, where sk = 1− 3
2(k−2) (sk ≥ sscal = 1− 2

k
).
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Theorem 3 Assume 3 ≤ k ≤ 7. For any u0 ∈ Hs(R2), s > 3/4,

there exist T = T (‖u0‖Hs) > 0 and a unique solution of the IVP (22),

defined in the interval [0, T ], such that

u ∈ C([0, T ];Hs(R2)),

‖Ds
xux‖L∞x L2

yT
+ ‖Ds

yux‖L∞x L2
yT
<∞,

‖u‖Lpk
T L∞xy

+ ‖ux‖L12/5
T L∞xy

<∞,
(23)

and

‖u‖L4
xL
∞
yT
<∞, (24)

where pk = 12(k−1)
7−12γ and γ ∈ (0, 1/12). Moreover, for any T ′ ∈ (0, T )

there exists a neighborhood W of u0 in Hs(R2) such that the map

ũ0 7→ ũ(t) from W into the class defined by (23)–(24) is smooth.
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Theorem 4 Let k ≥ 8 and sk = 1 − 3
2(k−2). For any u0 ∈ Hs(R2),

s > sk, there exist T = T (‖u0‖Hs) > 0 and a unique solution of the

IVP (22), defined in the interval [0, T ], such that

u ∈ C([0, T ];Hs(R2)),

‖Ds
xux‖L∞x L2

yT
+ ‖Ds

yux‖L∞x L2
yT
<∞,

‖u‖
L

epk
T L∞xy

+ ‖ux‖L12/5
T L∞xy

<∞,
(25)

and

‖u‖L4
xL
∞
yT
<∞, (26)

where p̃k = 2(k−2)
1−2γ and γ > 0 is sufficiently small. Moreover, for any

T ′ ∈ (0, T ) there exists a neighborhood U of u0 in Hs(R2) such that

the map ũ0 7→ ũ(t) from U into the class defined by (25)–(26) is

smooth.
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Global Results

Theorem 5 (Farah-L-Pastor) Let u0 ∈ H1(R). Let k ≥ 2 and sk =

(k − 2)/k. Suppose that

E(u0)
skM(u0)

1−sk < E(Q)skM(Q)1−sk, E(u0) ≥ 0. (27)

If

‖∇u0‖sk

L2‖u0‖1−sk

L2 < ‖∇Q‖sk

L2‖Q‖1−sk

L2 , (28)

then for any t as long as the solution exists,

‖∇u(t)‖sk

L2‖u0‖1−sk

L2 = ‖∇u(t)‖sk

L2‖u(t)‖1−sk

L2 < ‖∇Q‖sk

L2‖Q‖1−sk

L2 , (29)

where Q is the unique positive radial solution of (33). This in turn

implies that H1 solutions exist globally in time.
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The main ingredient of the proof is the classical result obtained by

M. Weinstein, regarding the best constant of the Gagliardo-Nirenberg

inequality.

Theorem 6 Let k > 0, then the Gagliardo-Nirenberg inequality

‖u‖k+2
Lk+2 ≤ Kk+2

opt ‖∇u‖kL2‖u‖2L2, (30)

holds, and the sharp constant Kopt > 0 is explicitly given by

Kk+2
opt =

k + 2

2‖ψ‖kL2

, (31)

where ψ is the unique non-negative, radially-symmetric, decreasing

solution of the equation

k

2
∆ψ − ψ + ψk+1 = 0. (32)
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Remark 1 If ψ is the solution of (32), then by uniqueness

Q(x, y) = ψ

(√
k

2
(x, y)

)
,

is the solution of

∆Q−Q + Qk+1 = 0. (33)

Moreover,

‖Q‖2L2 =
2

k
‖ψ‖2L2.
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In the critical case k = 2 we can go below H1(R2)

Theorem 7 (L-Pastor) Let k = 2. Let u0 ∈ Hs(R2), s > 53/63, and

assume that ‖u0‖L2 <
√

3‖ϕ‖L2, where ϕ is the ground state solution

of equation (33), then the solution of (22) is globally well-posed.

We use the low-high frequency method introduced by Bourgain.
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Scattering

Theorem 8 Let u0 ∈ H1(R2) ∩ Lp′(R2) such that

‖u0‖Lp′ + ‖u0‖H1 < δ.

where p = 2(k + 1), p′ = 2(k+1)
2k+1 . Let k ≥ 3 and u(t) be the global

solution of (22). Then, there exist f± ∈ H1(R2) such that

‖u(t)− U(t)f±‖H1 −→ 0, (34)

as t→ ±∞.

Remark 2 Actually if k > 3+
√

33
4 ' 2.186 the result in Theorem 8 holds.
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Final Remarks

– We observe that Bourgain’s approach to deal with the KdV equation,

does not seem to work in our case. Indeed, it is well-known that to ob-

tain “good bounds” by using the Fourier restriction method we need to

know very well the behavior of the resonant function, or equivalently,

the geometry of the resonant set, which is the zero set of the resonant

function. In general, if the geometry of the resonant set is too “com-

plicated” then it is not clear how to perform dyadic decompositions to

get the needed estimates. This is the situation in our case where the

resonant function is given by

h(ξ, ξ1, η, η1) = (ξ − ξ1)(3ξξ1 + ηη1) + (η − η1)(ξη1 + ξ1η).


